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Kingman's Subadditive Ergodic Theorem

By

J. Michael Steele

.~ The objective of this note is to give a proof of Kingman's subaddi-
tive ergodic theorem which is perhaps simpler and more direct than those
previously given,([2]), (3], (4], (51, [6}, [71, [11]).

Theorem. Suppose T 1is a measure preserving transformation of the

probability space (Q,%,u) and that {gn, 1< n<»} is a sequence of

integrable functions which satisfy
n
(1) gn+m(x) s_gn(x) + gm(T x) .
With probability one we then have the existence of the limit

lim gn(x)/n =g(x) > ~-=,

n-> o

where g(x) 1is an invariant function.

Proof. We first check that g(x) = liminf gn(x)/n is an invariant
function. Since gn+1(x)/n E_gl(x)/n + gn(Tx)/n we see g(x) < g(Tx)
which gives {g(x) > a} < T-l{g(x) > a}. The fact that T is measure
preserving then implies {g(x) > a} = T_l{g(x) > al up to null sets.

This implies g 1is measurable with respect to the invariant o-field

and hence is invariant. The function ¢(x) = max(t,g(x)) where te (~,0)

is also invariant.




For € > 0, set A = {x: gy (x) < 2(¢(x)+€)} and note that

LI(LJQ'_=1 AR.) = 1, so we can choose N such that for B(N) = (J:,-l Ag)c

we have u(B(N)) < €.

Now, by Birkhoff's ergodic theorem, 1 z 1

n
n k=l "B(N
a.s. to E(lB(N)IG) where (G is the invariant field of T; so by

) (Tkx) converges

Chebyshev's inequality

n
1 k
U(lgi:xp = kzl lB(N)(T x) > A) <e/x.

n
G = {x: ] ‘lB(N)(Tkx) <2, V¥n > M
k=1

we have for M sufficiently large that u(CM) > 1-2e/A.
For any XE€ CM and n > M we obtain a decomposition for the integer
set [0,n) into three classes of intervals by the following algorithm:
Begin with k= 0. If k 4is the least integer in [O,n) not in an
k

interval already constructed then we consider Tkx. If TxeB(N)® then

there is an 2 < N so that gz(Tkx) < 2(¢(TRX)+€) < (d(x) +¢€)

and we take [k,k+l) as an element of our decomposition provided
kH < n. If ™ ¢ B(N) we take the singleton interval [k,k+l).
This algorithm provides a decomposition of some [O,n') with

n'-N<n' < n, and it is extended to a decomposition of [Q,n) by

adding as many singletons as necessary.
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Thus for any x € CM we have a decomposition of [0,n) into a

set of u intervals [Ti, Ti+li), 1 <%, <N, for which

T
gy (T ix) 5-1i(¢(x)-+e) together with a set of v singletons
i

(o]

[oi, 01+1) for which 1 )(T ix) = 1, and a set of w singletons

B(N

contained in (n-N,n).

By (1) and this decomposition of [0,n) we have on Cy»

u Ti v 0’1 w n-i
) g )< ] g (T + ] g(T x+ [ gt
n 1=1 1 1=1 1=1
v u K K y n-i
<@ +e) T 2,4+ J g (TR, (Tx) + ) g ("] .
{=1 i {=1 1 B(N) {=1 1

Since

o

u(lgl(Tkx)l > k) = } u(lgl(x)[ > 6k) < » , for all § > 0,

)
k=1 le=1

the Borel-Cantelli lemma implies gl(Tkx)/k + 0 a.s.. From this one

easily sees that almost surely

N
(3) lm 1§ g, (™" M) = 0.
f=1

N -+ oo

Also, by Birkhoff's ergodic theorem we have

n
1 k
) SRR T L TOR U

n > o




Finally n > Z:-l 9.1?_ n-N-2€en so from (2), (3), (4) we have on

CM that

(5) lin sup g (x)/n < 6()+3c + E(gyly g0 .

n-+ o

For N + o lB(N) + 0 a.s. so by dominated convergence
E(gllB(N)ch + 0 a.s.. Therefore, by the arbitrariness of

€, t, A, N, and M we have with probability one that

1lim sup %(x)/ni lim 4inf gn(x)/n ,

N+ w n-=+ o

which completes the proof of convergence.

Remarks. (1). The preceeding proof was motivated by the recent
proofs of the Birkhoff ergodic theorem and the Shannon-MacMillan-Breiman
theorem given by Paul Shields [8]. That work is in part devoted to
the simplification and exposition of some recent work of Ornstein and
Weiss [7].

(2). 1Inspection of the preceeding proof shows that it suffices to
assume that just gI € L}, instead of g, € Ll, for all n. That the
subadditive ergodic theorem persists under this condition was already

observed in Kingman [5, p. 885].

(3). David Aldous has shown that Kingman's subadditive ergodic theorem
can be used to give a very brief proof of the ergodic theorem for Banach space ;
due to Maurier [8]. 1f {Xi} is a stationary process with values in a
Banach space F, we first note there is no loss in assuming E(xlla) =0
where (G 1s the invariant o-algebra. Also, we can find a linear operator

8 on F with finite dimensional range such that rlkl-ex1||5,e. Now

4

o -




Birkhoff's ergodic theorem (applied to linear functionals) shows that

n
1 Zi—l G(Xi) converges a.s. and in L1 to EG(XI). The Ll con-

S
vergence guarantees lim E[L;? - Ee(xl)llg_e from which it follows that

lim Ellsn/nn = 0. But since I[Sn” is a subadditive process l|Sn/nH
converges a.s., and now necessarily converges a.s. to zero.

(4) Andrés del Junco has pointed out that there is a useful device
of Akcoglu and Sucheston [1l] which can be used to circumvent the

estimations of the last two terms in equation (2). The idea 1is that

g; .8m(x)- Z?;é gl(Tix) defines a (negative) subadditive process.
The last two terms in equation (2) applied to g; would then simply

not appear.

The proof given above was retained in order to maximize conceptual

simplicity (at the cost of a little extra computation).
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to me his manuscript [10].]. I also owe a debt David Aldous, Andrés del Junco

and Joe Marhoul for their comments on an earlier draft and their permission

to incorporate the remarks given above.
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